martes, 16 de enero de 2018

Encuentran una respuesta al gran éxito de las plantas con flores

La rápida aparición, dispersión y diversificación (hablando en una escala evolutiva de miles de años) de las plantas con flor durante el cretácico se ha considerado un gran misterio durante muchos años. Es decir, hasta ahora no se entendía por qué el paso evolutivo de helechos y plantas gimnospermas (sin flor, tipo pino, abeto, etc.) a angiospermas (las plantas con flor) tuvo tanto éxito para estas últimas, desplazando a helechos y gimnospermas en la mayoría de hábitats. Aunque una de las teorías para explicar la gran diversidad de éstas ha sido que han co-evolucionado con los polinizadores, ésta no ha convencido a la mayoría de los científicos que dudan que esta sea la única causa.
Por ello, investigadores de las universidades de Yale y San Francisco en Estados Unidos, han desarrollado otra teoría, demostrándola con datos. 

¿Cómo lo han hecho?

Ellos explican que el éxito de las plantas con flor es debido a que éstas pudieron desarrollar hojas con estomas (células de las hojas especializadas en el intercambio de gases) mucho más pequeños, redes de “venas” más ramificadas en las hojas, lo que permitió mayores índices de transpiración, fotosíntesis y crecimiento. 
¿Y cómo pudieron hacer esto este grupo de plantas? Estos investigadores explican que lo pudieron hacer porque las plantas con flor comprimieron su genoma a lo largo de la evolución, haciéndolo más pequeño y permitiendo células más pequeñas y, por tanto, más óptimas.



Estos científicos han utilizado una combinación de estudios anatómicos, citológicos (referentes a las células), modelado de transporte de agua y de intercambio de gases entre hojas y atmósfera. Gracias a esto han aportado evidencias muy fuertes que demuestran que el éxito y rápida dispersión de plantas con flor a lo largo de todo el planeta ha sido debido a la reducción del tamaño de su genoma.
Han estudiado más de 400 especies de helechos, gimnospermas y angiospermas y han demostrado que esta reducción del genoma fue un requisito imprescindible para las altas tasas de crecimiento entre las plantas terrestres. Las especies con genoma más pequeño, tienen estomas más pequeños y más abundantes y mayor densidad de venas. Esto les ha permitido, además, a estas células más pequeñas, una mejor adaptación a las condiciones ambientales.
Es decir, las plantas con flor pudieron triunfar porque redujeron su genoma y así hicieron células más pequeñas y más optimas.

Conclusiones.

Este estudio resuelve una de las preguntas más importantes de la biología vegetal de la actualidad, sin embargo, como casi siempre en la ciencia, abre otras cuestiones aún sin resolver: por ejemplo: ¿por qué las angiospermas pudieron empaquetar el genoma y el resto de grupos de plantas no pudieron? O, si las angiospermas se han adaptado al medio ambiente mucho mejor, ¿por qué en algunas zonas del planeta han podido resistir tan bien las gimnospermas sin llegar a extinguirse?
El estudio original en inglés lo pueden leer en este link.

Compartir:

miércoles, 10 de enero de 2018

“Wearable” para plantas, una posible solución para un mayor seguimiento de los cultivos

Uno de los retos más importantes en el sector de la nanotecnología es hacer dispositivos lo más versátiles, flexibles, resistentes y baratos posible. Pero parece que el manejo de los nanomateriales, con especial atención en el grafeno, puede ser más complicado de lo que se esperaba, y el futuro que nos prometían hace muchos años que nos iban a inundar con dispositivos basados en grafeno, se está retrasando un poco.


En el caso de que lo consigan (mejor dicho, “cuando” lo consigan, porque es un hecho que lo van a conseguir tarde o temprano) el sector de la agricultura deberá estar muy atento, porque los nanomateriales y nanosensores tienen un potencial agrícola inmenso ( tal y como podéis leer en este otro post sobre las e-Plants o plantas electrónicas) .
Sin embargo, parece que la aplicación a la agricultura de estos nanosensores no está tan lejos, un grupo de investigadores de Iowa (de los departamentos de de agronomía y de electrónica) han conseguido un método simple y versátil para estampar y transferir nanomateriales basados en grafeno en varios tipos de cinta para fabricar sensores flexibles a microescala, y lo han publicado en la prestigiosa revista “Advanced materials technologies” (que lo ha elegido para su portada, que podéis ver al final del artículo). Es decir, si consiguen desarrollar esto, podrían “estampar” “pegatinas de grafeno” en hojas de cultivos para medir cientos de parámetros a bajo coste (como transpiración, humedad, temperatura…).

¿Cómo lo han hecho?

El método consiste en aplicar grafeno mediante una técnica de drop-casting (o fundición en una gota al caer) en una superficie de polydimethylsiloxane (PDMS), en el que previamente se han realizado unos patrones. Entonces se aplica una sencilla Cinta adhesiva “Scotch” para eliminar el exceso de grafeno. Una vez eliminado el exceso de grafeno se aplica el grafeno “empatronado” en una cinta para pegarlo a cualquier superficie.

Conclusiones

Este artículo solamente explica el método para realizar estos microsensores de grafeno, pero parece ser que lo han aplicado a plantas con resultados muy prometedores. Si este método es tan simple y barato como prometen (ya está en proceso de patente), puede ser toda una revolución en el sector agrícola, ya que podríamos llenar nuestros campos de estudio de “wearables” con los que conseguiríamos muchos más datos y mucho más precisos.

El artículo completo lo pueden leer aquí en inglés en la revista.

Compartir:

miércoles, 3 de enero de 2018

Variedades de cultivos mejoradas en menos tiempo gracias al “speed breeding”

El crecimiento de la población mundial y el cambio climático son las amenazas más importantes para la seguridad alimentaria en el planeta. Para afrontar estas amenazas, una de las herramientas que tenemos es la obtención de variedades más productivas, que resistan más a las sequías, etc. En la revolución verde entre 1960 y 1980 (iniciada por el premio Nobel de la paz Norman Borlaug) se consiguió desarrollar variedades de trigo, maíz y arroz, principalmente, más resistentes a los climas extremos y a las plagas, capaces de alcanzar altos rendimientos por medio del uso de fertilizantes, plaguicidas y riego.
Pero desde entonces no ha habido otro salto con estas dimensiones que nos permita afrontar los nuevos retos. Por ahora se tarda más de 4-6 generaciones (una vez seleccionadas las líneas parentales) en estabilizar una nueva variedad. Considerando que no se pueden conseguir más de 1-2 generaciones por año, es prácticamente imposible conseguir una mejor variedad en menos de 10-15 años en función de la especie (tiempo insuficiente debido a la aceleración de los cambios climáticos actuales y la velocidad con la que se expanden las plagas en este mundo globalizado).
Investigadores ingleses y australianos del John Innes Centre, University of Queensland y University of Sydney han publicado el día 1 de enero en la prestigiosa revista Nature plants un nuevo método que han llamado “speed breeding” que consigue reducir estos tiempos de forma espectacular.


¿Cómo lo han hecho?

Para evaluar diferentes métodos de crecimiento de las plantas, probaron a crecer trigo duro, trigo panadero, cebada y la planta modelo de cereales Brachypodium distachyon en diferentes condiciones en un invernadero controlado. Normalmente se usa un periodo luz/oscuridad diario (llamado fotoperiodo) de 12 horas de luz y 12 de oscuridad, consiguiendo unas 3 generaciones al año. Cuando probaron un fotoperiodo de 22 horas de luz al día con solamente 2 de oscuridad y aumentando la temperatura, las plantas crecieron mucho más rápido, obteniendo hasta 6 generaciones al año (¡el doble!).
Además, una vez que la espiga ya estaba formada, en lugar de esperar 15 días a que madurara de forma natural, la metieron en una estufa con calor. Así, consiguieron reducir el tiempo de madurez de la espiga de 15 días a solamente 3 días.



Para comprobar que esto no afectaba a la estabilidad genética de las plantas que se crecían con estas nuevas condiciones, analizaron varios genes de las plantas crecidas con este “speed breeding”. No apreciaron ningún problema genético en las plantas crecidas de esta forma.
En el artículo, los autores afirman que esta nueva técnica es muy probable que sea aplicable a otras plantas que responden al fotoperiodo como el girasol, pimiento o chile o rábano (entre otras).


Conclusiones

Con este método han podido conseguido 6 generaciones por año en trigo, cebada, garbanzo y guisante, entre otras. Esto es toda una revolución ya que se podrían conseguir nuevas variedades en una tercera parte del tiempo que antes (que son muchos años).
Además, esto supondrá que los investigadores consigan variedades mejores más rápidamente, no solamente de los típicos cultivos (como arroz, trigo, maíz..) sino de aquellos con una mejora más complicada y que, por tanto muchas veces no han conseguido llegar al gran mercado tan fácilmente.
El artículo completo lo pueden leer en este enlace.

Compartir:

miércoles, 27 de diciembre de 2017

Los 10 Avances Científicos más importantes del año 2017, según Science

Siguiendo la tradición del año pasado, aprovechamos esta última semana del año 2017 para hacer un último artículo explicando brevemente los 10 avances científicos más importantes del año según los expertos de la prestigiosa revista Science.

Convergencia cósmica.

El pasado 17 de agosto, científicos en todo el mundo fueron testigos de algo nunca visto: a una distancia de 130 millones de años luz de la tierra, dos estrellas de neutrones chocaron con una espectacular explosión que pudo ser observada con telescopios desde rayos gamma hasta de radio. Esta explosión pudo confirmar varios modelos astrofísicos revelando el lugar de la creación de muchos elementos pesados y probando (una vez más) la teoría general de la relatividad. Es especialmente remarcable la forma en que esto se encontró, gracias a las ondas gravitacionales (apenas detectadas por primera vez 27 meses antes). Para más información pueden ver los siguientes artículos aquí y aquí 



El triunfo de la terapia génica.

Científicos han conseguido salvar la vida de bebés nacidos con una enfermedad neuromuscular hereditaria añadiendo un gen a sus neuronas espinales. Si no se hubieran tratado, los bebés hubieran muerto con dos años. Este avance supone otro logro muy importante, porque consiguieron cargar el nuevo gen a través de la membrana que protege el cerebro y la célula espinal de los patógenos y toxinas. Este gran logro abre la puerta a otras terapias génicas para tratar otras enfermedades neurodegenerativas. La clave fue un virus maligno, llamado virus adeno-asociado (AAV), que lo utilizaron para que transportara el gen “bueno”. Ahora han demostrado la terapia génica intravenosa AAV9 puede detener la atrofia muscular espinal 1 (SMA1). Además el pasado 19 de diciembre, Estados Unidos aprobó la primera terapia génica para tratar un raro desorden hereditario que causa ceguera.
Más información, aquí:


Los humanos somos 100.000 años más antiguos de lo que se pensaba.

En Marruecos se ha encontrado una porción de calavera de Homo Sapiens con 300.000 años de antigüedad (100.000 años más antigua que el último fósil de Etiopia). De hecho, el descubrimiento se hizo en 1961 por unos mineros, pero se atribuyó a los Neardentales. Nuevos análisis con una técnica llamada “termoluminescencia” lo han reclasificado como H. sapiens.
El artículo completo lo pueden leer aquí

Salto en la Edición de los genomas

Más de 60.000 aberraciones genéticas se han relacionado con enfermedades y casi 35.000 de ellas son causadas por errores minúsculos de apenas una base de DNA en un lugar puntual del genoma. Este año se ha anunciado un importantísimo avance en la novedosa técnica de edición genética llamada CRISPR que puede corregir mutaciones puntuales, no únicamente en el DNA, sino también en el RNA de forma cada vez más fiable. Unos científicos chinos han demostrado este año que pueden modificar mutaciones puntuales en embriones humanos. Esta técnica, si las leyes lo permiten, podrá salvar millones de vidas en un futuro ya no tan lejano.
En el siguiente enlace pueden leer más sobre el tema.

Nueva herramienta contra el cáncer, gracias a un cambio de estrategia.

Ha costado mucho, pero al fin se ha conseguido, un medicamento que no ataca al órgano que sufre el cáncer, sino a la raíz del mismo, el DNA. El pasado mayo, Estados Unidos ha aprobado el primer tratamiento de este tipo, llamado pembrolizumab. De momento aprobado para tratar el melanoma y otros tipos de tumores, tanto en adultos como en niños, solamente tiene una condición, tiene que tratarse de tumores que tenga el defecto llamado “deficiencia de reparación de errores”. Esto significa que este medicamento ataca por el modo de acción del cáncer, no por dónde se localiza. Se ha visto que los tumores tienen más en común por su forma de acción, que por el órgano donde aparecen. En este artículo tienen más información

Un nuevo gran primate.

Hacía 90 años que no se descubría una nueva especie de primate en el planeta, hasta que este año se ha descubierto una nueva especie de orangután, el Pongo tapanuliensis. Solamente queda una pequeña población de 800 individuos en la parte indonesia de la isla de Sumatra, y si no se realiza una importante inversión de conservación, no quedará mucho tiempo de vida a este primo lejano nuestro, en este enlace, tienen más información.

Autor foto: Tim Laman (Wikipedia commons)


Vida a nivel atómico

Se trata de un avance al que aún le queda mucho por decir. Se trata de una técnica llamada Criomicroscopía electrónica (cryo-EM). Se trata de una novedosa técnica que permite a los científicos hacer fotografías de moléculas complejas interactuando con otras moléculas. Este año está técnica ha aportado muchos avances sobre la forma que funciona una proteína compleja. De hecho, algunos de los pioneros de la técnica han sido premiados con el Nobel de Química.
Para más información pueden leer este artículo.

Un minúsculo detector de las moléculas más escurridizas

Este año, un grupo de físicos han localizado la partícula subatómica más escurridiza, los neutrinos, cambiando la forma de ver el núcleo atómico. Después de cuatro décadas de estudio, han conseguido detectarlo con un aparatito más pequeño que un microondas de cocina (cosa rara en ciencia, que casi siempre que se habla de este tipo de instrumentos suelen ser gigantes instalaciones). Estos neutrinos se generan en ciertos procesos nucleares, pero son tan raros que interactúen con otras partículas que son muy complicados de detectar. Este avance va a ser muy importante porque se podrá utilizar la detección de neutrinos en las centrales nucleares o para estudiar los agujeros negros.
Para más información pueden ver el siguiente enlace.

La atmósfera de la tierra hace 2,7 millones de años.

Se ha encontrado congelado en la Antártida en unas minúsculas burbujas en el hielo con el aire que existía en la tierra hace 2,7 millones de años (1,7 millones de años más antiguo que lo que se había conseguido hasta ahora).
El artículo que lo explica se puede leer aquí.

Nuevos sistemas de publicación en Ciencias biológicas

Desde hace décadas, científicos del área de físicas comparten de forma mundial sus artículos antes de ser publicados, para que sus colegas de otros centros de investigación los estudien y comprueben. Sin embargo, hasta este año, esta metodología no existía en las ciencias biológicas. Los manuscritos son contrastados por dos o tres revisores, se publicaban y entonces se hacían disponibles para todo el mundo (que pague la inscripción a la revista de turno).
Parece que este año se ha disparado esta nueva metodología promovida por Chan Zuckerberg Initiative, gracias a su inversión en bioRxiv. Sinceramente para mí no me parece que sea uno de los avances del año (pero en este artículo me he basado en el documento de Science, que ellos sabrán mucho más que yo).
Para más información en este artículo.

Según la importantísima revista Science estos han sido los 10 avances científicos del año, ¿están de acuerdo? ¿Conocen algún otro avance científico que vosotros consideráis más importante?

El artículo original lo pueden leer aquí.

Compartir:

viernes, 15 de diciembre de 2017

¿Qué características físicas de los hombres atraen más a las mujeres según la ciencia?

El artículo de hoy va a traer polémica, pero vamos a destacar que esta no es una opinión mía, sino de un estudio que se acaba de publicar en la revista científica Proceedings of the Royal Society B: Biological Sciences, y me ha parecido curioso (sin decir si estoy de acuerdo con los resultados). En él destacan que, aunque seamos seres racionales, la evolución genética influye directamente en nuestra vida cotidiana, y especialmente en algunas de las decisiones más importantes de nuestra vida, como elegir pareja.
Tres investigadores norteamericanos y australianos han estudiado las características físicas de los hombres que resultan más atractivas para las mujeres y han llegado a interesantes conclusiones. 
Según este estudio, la evolución equipa a los seres vivos que se reproducen sexualmente (nosotros entre ellos) con mecanismos de elección que les ayuda a elegir a la pareja que les va a dar mejores características a su descendencia. De hecho, los psicólogos evolucionistas han mostrado que los mecanismos de elección de pareja de las mujeres rastrean muchas señales de la calidad genética de los hombres y de su futura capacidad para aportar recursos a la mujer y su descendencia. Una de estas pistas es su capacidad física (capacidad de lucha o de conseguir recursos). 

¿Cómo lo han hecho?

En este estudio consideran que una de estas señales importantes para la mujer (ya sea consciente o inconscientemente) es su fortaleza física. Para demostrarlo han mostrado, a 150 mujeres, fotografías de hombres y les han hecho opinar cual les resulta más atractivo. Los resultados mostraron que el componente físico era fundamental para el 70% de las mujeres. Dentro de este componente físico, la altura y la esbeltez eran los factores favoritos. Además observaron una clara linealidad de atractivo con la fortaleza física, es decir, los más fuertes resultaban más atractivos. Otro punto curioso es que la belleza del rostro no influía apenas en el atractivo.

Conclusiones.

A pesar de la claridad de los resultados, sinceramente no creo (ni espero, por la parte que me toca) que el artículo sea realmente significativo porque solamente han utilizado 150 mujeres. Aunque no deja de tener sentido que los humanos nos dejemos llevar en algunas de las decisiones de nuestra vida por los instintos más animales que han sido moldeados por la evolución.
Y ya sabes, si eres feo, soltero y quieres encontrar novia, métete al gimnasio, que aparentemente pueden aumentar tus posibilidad de encontrar al amor de tu vida… al menos mientras sigas estando fuertecito (¡jejeje!).

El artículo completo lo pueden leer en este enlace.

Compartir:

martes, 28 de noviembre de 2017

¿Cómo afectará el cambio climático a las enfermedades de los cultivos?

Las enfermedades de las plantas son una de las causas más importantes de pérdidas de los cultivos en el mundo. Entender cómo funcionan estas enfermedades y cómo les afectará el indudable calentamiento global es algo fundamental para la seguridad alimentaria a nivel global.
Hasta ahora se sospechaba que el incremento de las temperaturas en todas las zonas del planeta podría influir en las enfermedades de los cultivos y en la capacidad de los agricultores para combatirlas. Pero ahora se ha demostrado que esto es un hecho. Otra duda que se presentaba era si este cambio de temperaturas influye en la virulencia de la enfermedad (si hace más fuerte al hongo, bacteria o virus que afecta a la planta) o en la debilidad de la planta (la planta al tener que lidiar con unas temperaturas a las que no está acostumbrada, se puede debilitar y hacerla más sensible a la enfermedad).

Científicos estadounidenses y alemanes han demostrado, en un artículo en la prestigiosa revista Nature communications, que las temperaturas afectan a ambos, tanto al agente causante de la enfermedad como al paciente (la planta).

¿Cómo lo han hecho?

Han utilizado dos organismos modelo, por una lado la planta Arabidopsis thaliana (una pequeña plantita muy sencilla pero muy útil para estudios científicos) y por otro lado una bacteria que le causa la enfermedad, llamada Pseudomonas syringae pv. tomato DC3000 (Pst DC3000).
Han utilizado plantas a temperatura “normal” para su especie (23 ºC) y a temperatura “ligeramente elevadas” (27-30ºC) y han puesto la bacteria para que la infectase. El crecimiento de la enfermedad en la planta era 30 veces superior cuando se superaba la temperatura "normal" para la planta. Para ver si el causante era porque la planta estaba debilitada o la bacteria fortalecida, estudiaron los genes que se expresaban tanto en la planta como en la bacteria y vieron la diferencia de expresión a diferentes temperaturas. 
Descubrieron que una de las rutas de defensa (la del ácido salicílico concretamente) de la planta reducía su expresión cuando la planta estaba a mayores temperaturas, lo que indicaba que no solamente la bacteria crece mejor cuando la temperatura  es mayor, si no que la planta se debilita. Por otra parte probaron si una sustancia llamada BTH (un inductor del ácido salicílico llamado benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester) era capaz de estimular la defensa de las plantas mediante la inducción de la ruta de defensa que quedaba debilitada al incrementarse la temperatura, y efectivamente, lo consiguieron. La planta resistía mejor la enfermedad cuando se estimulaba esta ruta defensiva.

Conclusión.

Gracias a este estudio queda claro que el incremento de las temperaturas influye tanto en las plantas ( y cultivos en general) haciéndolas más sensibles a las enfermedades así como en la enfermedad en sí (haciéndola más fuertes).

En este artículo podemos ver otro ejemplo sobre cómo el cambio climático va a ser un grandísimo problema (de hecho ya lo está siendo en muchas regiones del mundo como en España) y que si queremos mantener la seguridad alimentaria a medio-largo plazo tenemos que dar soluciones científicas tanto para resolver el problema (reduciendo nuestro impacto en el planeta) como para solucionar todas las nefastas consecuencias que este cambio está trayendo.


La imagen del tomate atacado por Pseudomona syringae procede de Wikipedia de autor Goldlocki (CC)
Compartir:

domingo, 19 de noviembre de 2017

¿Cómo se acaba con el genoma más pequeño del mundo?

Los microorganismos no nos dejan de sorprender cada día con nuevas propiedades que los hacen parecer casi extraterrestres. Un grupo de científicos estadounidenses, alemanes y japoneses, acaban de descubrir una bacteria, llamada Stammera, que tiene el genoma más pequeño conocido en ningún organismo independiente. Es importante aclarar que estamos hablando de organismos que viven fuera de las células de otro organismo, porque cuando un organismo se adapta a vivir dentro de otra célula puede acabar con genomas ínfimos con apenas unos pocos genes, como los virus.
El genoma de Stammera tiene una longitud de 0,27 Megabases (o Millones de bases, la unidad de medida de los genomas, que es el número de bases (A,T,C o G) de la cadena de ADN). 
Para que el lector se haga una idea de lo pequeño que es esto, el ser humano tiene un genoma de 3.227 Megabases (Mb), el arroz tiene 415 Mb, el maíz 2.500 Mb, la cebada 5.300 Mb, y una de las bacterias con genoma más pequeño conocido y la primera secuenciada completamente, el Haemophilus influenzae tiene 1.740 genes (1.8 Mb).

¿Cómo lo han descubierto y como ha podido ocurrir esto?

La pectina es un componente fundamental de la pared de las células vegetales, pero es una sustancia muy difícil de digerir por la mayoría de los seres vivos porque se necesitan un tipo de enzimas pectinolíticas (que rompe la pectina) muy específicas. Algunos animales e insectos se sirven de microorganismos que habitan en su sistema digestivo para poder alimentarse de plantas y romper esta pectina (es un buen trato para los dos, el animal es capaz de alimentarse de plantas y los microorganismos pueden vivir calentitos en los intestinos del animal con un constante flujo de alimento). En el estudio que nos ocupa, los científicos buscaban saber cómo un tipo de escarabajo, llamado Cassida rubiginosa, podía digerir las hojas. Sin embargo descubrieron que había una especie de bacteria que se ocupaba de este trabajo, dándole al escarabajo el alimento digerido. 


La imagen del escarabajo, por cortesía de Ryan Hodnett (Oakville, Ontario, Canadá).

Cuando estudiaron la bacteria, secuenciaron su genoma y descubrieron que era pequeñísimo, solamente 0,27 Mb. Sin embargo mantenía los genes más importantes que le daban la capacidad de alimentarse de las clases de polisacáridos más abundantes en las plantas, homogalacturonanos y rhamnogalacturonanos.
Para comprobar que era la bacteria la que le daba al escarabajo la capacidad de alimentarse de la planta, probaron a eliminar la bacteria del interior del escarabajo. Esto resultó en una disminución radical de los escarabajos supervivientes, por lo que dedujeron que la bacteria era vital para la alimentación del insecto.

Conclusiones.

En este artículo se puede ver como la evolución ha llevado a que dos organismos se unan para obtener una ventaja evolutiva (alimentarse de pectina), de tal manera que han llegado a ser tan dependientes uno del otro que prácticamente sería imposible que sobreviviera uno sin el otro. Ha llegado hasta tal punto la evolución genética que la bacteria ha ido “perdiendo” genes que no le son necesarios y se ha especializado tanto que ha acabado con el genoma conocido más pequeño del planeta.
El artículo completo en el cual publican este descubrimiento se puede leer en este enlace.

Compartir:

miércoles, 8 de noviembre de 2017

Un poco de estrés puede ser bueno para aumentar la longevidad y reducir el daño celular

Aunque suene obvio, envejecer es uno de los factores de riesgo más importantes para la mayoría de las enfermedades. Sin embargo, apenas se conoce por qué envejecemos ni la relación de la vejez con las enfermedades. Se suele considerar al envejecimiento un proceso estocástico que se caracteriza por la acumulación de daño celular. Por estocástico me refiero, a grandes rasgos, a un proceso aleatorio que tiene una dinámica, es decir, que no es lineal (unas personas envejecen más rápidamente que otras, en función de su genética interna o de cómo se hayan cuidado físicamente, pero todas las que llegan a cierta edad acaban envejeciendo poco a poco). Sin embargo, otras evidencias sugieren que el envejecimiento está programado a nivel celular como una serie de eventos que aparecen para que nos reproduzcamos.. pero eso ya es otra historia.
En este contexto, Investigadores de Gran Bretaña y Estados Unidos han descubierto que un poco de estrés controlado puede ser bueno para la salud celular. Este descubrimiento puede ayudar a comprender cómo es el proceso de envejecimiento y sus consecuencias en las enfermedades degenerativas.

Imagen de Giselle Chamorro

¿Cómo lo han hecho? 

Los investigadores han trabajado en el Caenorhabditis elegans, un pequeño gusano del suelo que se utiliza como organismo modelo para estudiar los procesos celulares de los organismos superiores.
El equipo de investigación encontró que hay señales de mitocondrias (el orgánulo celular que produce la energía que consumimos) levemente estresadas que son capaces de prevenir errores en la proteostasis, que es una de los efectos del envejecimiento. La proteostasis es el mecanismo que tienen las células para controlar la calidad en el plegamiento de las proteínas, es decir, lo que controla que las proteínas se “fabriquen” bien. Si este control de calidad no es bueno, aparecen proteínas “mal hechas”, lo que provoca enfermedades como cáncer o Alzheimer. De hecho, si la mitocondria funciona perfectamente, se ha visto que las células y los tejidos se mantienen fuertes.
Concretamente lo que hicieron, a grandes rasgos, fue exponer a estos gusanitos a pequeñas dosis de sustancias tóxicas y a patógenos ( simulando una situación de estrés del animalito), lo que resultó en gusanos más saludables y que sobrevivían más tiempo.
Imagen de microscopio electrónico de Caenorhabditis elegans (agosto de 2012) Autor: Antje Thomas, Schulenburg Lab, Kiel

Aunque está claro que en este artículo se ha realizado en un organismo modelo y aún no se puede afirmar que sea exactamente igual en humanos, estos nuevos conocimientos pueden ser muy valiosos para seguir vislumbrando el complejo proceso del envejecimiento.

Conclusiones

Hasta ahora se pensaba que un estrés mitocondrial prolongado es malo. Pero este descubrimiento parece indicar que las señales de estrés desatan en los animales una reacción de supervivencia, o que le ayuda a “tener que” mantenerse más joven para sobrevivir.
Como moraleja, no hay que buscar una vida cómoda, sino una que te someta a pequeños retos y que estrese a tus mitocondrias, pero sin pasarse, que mucho estrés tampoco es bueno (esto no viene en el artículo, es de mi propia cosecha 😀)
El artículo completo se puede leer en este link de la revista Cell Reports.

Compartir:

miércoles, 1 de noviembre de 2017

¿Sabes de dónde viene la mayoría de la contaminación de las playas?

Uno de los mayores problemas sanitarios de las playas de todo el mundo es la contaminación de sus aguas por bacterias fecales, que provocan todo tipo de enfermedades en los humanos. Es imprescindible para nuestra salud conocer esta contaminación tan peligrosa y especialmente saber de dónde viene, para poder reducir el riesgo al mínimo.
Con este objetivo un grupo de investigadores han estudiado si el tipo de bacterias que hay en el agua de las playas (concretamente en unas playas de Estados Unidos) procedía del ganado, de humanos o de cualquier otro origen. Su trabajo lo acaban de publicar en este artículo en la revista científica Water and Environment Journal.
Es importante destacar que los análisis (101 análisis durante 13 semanas, en 9 lugares distintos) los hicieron en las condiciones que propiciaban la aparición de bacterias procedentes de las heces del ganado, ya que los hicieron justo después de que hubiera lluvias importantes. Esto lo hicieron para ponerse en el peor de los casos, porque, en teoría habría más riesgo de que el agua arrastrara las heces del ganado a las playas.

Estos análisis se basaron en un tipo de análisis genético llamado Reacción en Cadena de la Polimerasa en tiempo real (del inglés qRT-PCR) (de la que ya hablamos en este artículo). Esta técnica se basa en la reacción de un tipo de enzima (la polimerasa) que es capaz de multiplicar el contenido de un gen de forma exponencial, y de esta manera hacerlo medible y cuantificable. Gracias a esta técnica se puede medir cuanta cantidad de un gen determinado hay en el agua, y por tanto, la cantidad de un tipo de bacteria dada. Así pudieron diferenciar cuantas bacterias procedentes de las heces del ganado, de las heces de humanos y de bacterias de  otras fuentes había en el agua de baño de las playas analizadas. Concretamente estudiaron un género llamado Enterococcus, que está demostrado que es el que más directamente se relaciona con las enfermedades de los bañistas.
Desgraciadamente este estudio nos dejó a nuestra raza en muy mal lugar, resultó que la gran mayoría de las bacterias fecales existentes en el agua de las playas eran... ¡humanas!. Aunque esto no quiere decir que estas bacterias fecales procedan directamente de los bañistas (no sé si me explico), también puede proceder de las ciudades y pueblos cercanos que hacen sus vertidos al mar.
Como conclusión quiero añadir que esto es un ejemplo más sobre cómo nos afecta directamente nuestra propia contaminación y la mala gestión del medio ambiente.  Es decir, cuidemos el medio ambiente, aunque solamente sea por egoísmo, porque toda la basura que le mandemos, nos la estamos mandando a nosotros mismos.
Compartir:

lunes, 16 de octubre de 2017

Abonos para producir verduras más sanas

Las frutas y verduras son fundamentales en toda dieta sana, pero todo tiene sus riesgos, y es la función de los científicos buscar soluciones a los problemas.
El Cadmio es un elemento que aparece muy frecuentemente en los suelos agrícolas por todo el planeta. Este Cadmio puede aparecer de forma natural (por efecto de la erosión de rocas cercanas) o por efecto de la actividad humana (como por el procesado de metales, fertilizantes o por combustión de minerales fósiles). Cuando estos suelos no son calcáreos, el Cadmio se puede acumular excesivamente en los cultivos, especialmente en verduras de hoja verde (como lechuga o espinaca), con consecuencias para la salud del consumidor.
Un grupo de científicos franceses y estadounidenses han descubierto que aplicando ciertos abonos a suelos con problemas de altos contenidos en Cadmio, pueden reducir la absorción de éste por las plantas por debajo de los estándares aceptados, reduciendo los riesgos para la salud. Acaban de publicar los resultados de sus investigaciones en la revista Journal of Environmental Quality.


¿Cómo lo han hecho?

Este grupo de investigadores observaron que en unos campos de cultivo de Monterey County  en California (Estados Unidos) las espinacas absorbían Cadmio en cantidades por encima de los límites saludable
Estudiaron once tratamientos distintos en plantas crecidas en invernaderos, entre los que figuraron compost, rocas calizas, Manganeso o Zinc, en diferentes proporciones.
Descubrieron que, al combinar estos compuestos en diferentes tratamientos, conseguían reducir el Cadmio final en la planta. Sin embargo, descubrieron que lo hacen de formas distintas. Unos lo hacen previniendo el paso del Cadmio a la planta mediante competencia de nutrientes (es decir, al “ofrecerle” a la planta otros nutrientes, ella prefiere otros que no son tan tóxicos). Pero otros actúan en el suelo, “capturando” químicamente el Cadmio, haciéndolo “no disponible” para la planta.
El siguiente paso para los investigadores será probar estos compuestos y sus combinaciones en diferentes suelos y diferentes cultivos.

Conclusiones.

Los investigadores han conseguido reducir el contenido en Cadmio de las espinacas hasta unos límites saludables simplemente utilizando las enmiendas y abonos adecuados.
Esto nos da una idea del tremendo potencial que tiene el correcto manejo de los suelos para muchas facetas de la agricultura, no solamente en el incremento del rendimiento de los cultivos, sino también en hacerlos más saludables y más sostenibles medioambientalmente. 
Es por tanto la función, yo diría obligación, de todos los que trabajamos en el sector, de estar constantemente buscando ideas innovadoras para obtener lo mejor de los cultivos mediante soluciones que mejoren los rendimientos de una forma sostenible y saludable.

Compartir:

martes, 3 de octubre de 2017

Eliminar los nitratos del agua para conseguir ecosistemas más saludables

El nitrógeno es uno de los pilares fundamentales de la agricultura moderna, se trata del nutriente más importante para los cultivos. Sin la aplicación de fertilizantes nitrogenados sería muy complicado (o imposible) alimentar a todo el planeta. 
Pero como toda tecnología, no todo son ventajas, tiene algunos inconvenientes. La aplicación excesiva de los fertilizantes nitrogenados en la agricultura provoca que el nitrógeno sobrante que no es absorbido por las plantas se pierda en forma de nitratos, arrastrado por el agua de la lluvia o del riego. Esto puede producir graves daños a los ecosistemas naturales (por la eutrofización) e incluso a la salud humana cuando llega al agua potable.
La industria de los fertilizantes y muchos grupos científicos están trabajando en reducir o eliminar este problema con tecnologías de liberación lenta que reduzcan al mínimo la pérdida de nitrógeno por escorrentía o incluso fomentando los microorganismos del suelo fijadores de nitrógeno.
Un grupo de científicos estadounidenses acaban de publicar en la revista Journal of Environmental Quality un artículo (que puede leer completo en este enlace) en el cual han encontrado “hotspots” (o puntos calientes) en los ecosistemas que pueden actuar como “limpiadores naturales” de éste nitrógeno. Esto puede ayudar de una forma muy importante a desarrollar estrategias de manejo de los fertilizantes y de las aguas de riego para que se limpien estos nitratos sobrantes de la agricultura.


¿Cómo lo han hecho?

Los investigadores analizaron el agua de varios arroyos en zonas agrícolas de Carolina del Norte (Estados Unidos), así como su grado de degradación, contenido en nitratos y la capacidad de éstos para limpiar el agua. Además estudiaron los sedimentos y las zonas “amortiguadoras “ o “buffer” entre estos arroyos y las tierras de cultivo a lo largo del tiempo. En el estudio también incluyeron plantas nativas, conocidas por su capacidad de absorber los nitratos.
Una vez obtenidos todos estos datos, comprobaron que las zonas “amortiguadoras” eran capaces de absorber gran cantidad de los nitratos sobrantes en la agricultura. Además descubrieron que había “hotspots” dentro de los arroyos con gran capacidad de absorción de nitratos, las características de estos “puntos calientes” era que los suelos tenían textura fina, abundante materia orgánica y mucha humedad.
Por último hicieron un modelo estadístico para diseñar zonas que fueran “limpiadoras perfectas de los nitratos” y así poder implantarlos en los cauces de los ríos.

Conclusiones.

Aunque se le ha echado la culpa a los fertilizantes nitrogenados de muchos de los problemas ecológicos y de la salud, la verdad es que esto ha sido provocado por un mal uso de éstos. Los fertilizantes nitrogenados son imprescindibles para garantizar la seguridad alimentaria, lo que hay que hacer es desarrollar tecnologías que aumenten su efectividad, reduciendo las pérdidas, que son lo que ocasionan los problemas.
Este estudio que nos ocupa es una estrategia muy interesante de ayudar a solucionar este problema, ya que si diseñamos las zonas de riego y las zonas acuáticas donde acaban los residuos agrícolas de una forma racional e inteligente, muchos de los problemas de impacto medioambiental de la agricultura podrían reducirse de una forma muy importante.



Compartir:

domingo, 17 de septiembre de 2017

Poquito a poquito vamos desvelando la complejidad de las plantas

La combinación de la genética y la proteómica nos descubre que las plantas son mucho más complejas de lo que pensábamos. 
Todos los días vemos, olemos y comemos unos seres vivos a los cuales apenas les damos importancia, pero que son vitales para nuestra existencia: las plantas. Pero a pesar de su importancia para nuestra vida y para la de muchos seres vivos más, apenas conocemos cómo funcionan. No sabemos por qué crecen de la multitud de formas qué lo hacen, la facilidad que tienen para adaptarse a todos los ambientes del planeta, ni siquiera conocemos todos sus componentes moleculares.
Con el objetivo de conocer un poco más sobre cómo funcionan las plantas, un grupo de científicos franceses, italianos y uno español (concretamente yo 😃 ) hemos realizado una investigación que publicamos la semana pasada en la prestigiosa revista Scientific reports. El artículo completo lo pueden ver en este link.
En esta investigación hemos combinado técnicas transcriptómicas y proteómicas para identificar los mecanismos que ocurren en una planta (desde las hojas hasta las raíces) cuando ésta es atacada por una bacteria que provoca una enfermedad.

En la imagen superior podemos ver la imagen del artículo publicado donde se pueden ver algunas de las rutas estudiadas.

¿Cómo lo hemos hecho?

En primer lugar sembramos varias semillas de trigo en condiciones controladas para que todas estuvieran en las mismas condiciones exactamente. Una vez  que ya eran adultas, a la mitad de ellas las infectamos con una bacteria llamada Xanthomonas translucens, que provoca una enfermedad muy importante en cereales (en inglés llamada  bacterial leaf streak (BLS)), dejando a la otra mitad como control para poder comparar. A las 24 horas recogí las hojas y las raíces de todas las plantas.
Todas estas muestras las analizamos con dos técnicas distintas, RNAseq (con el que podemos ver todos los genes que se expresan en los tejidos analizados) y Espectrometría de masas (con el que vemos la mayoría de las proteínas que existen en estos mismos tejidos).
Resumen sobre cómo tratamos las plantas

Una vez pudimos visualizar todos los genes y proteínas que estaban actuando en las hojas y raíces de las plantas atacadas por la enfermedad y en las sanas, utilizamos herramientas bioinformáticas para comparar toda esta masiva cantidad de datos y transformarlo en “rutas metabólicas” que nos dijeran que está pasando en la planta cuando es atacada por un patógeno.

Conclusiones:

Gracias a esta masiva cantidad de datos (estamos hablando de miles de genes y proteínas) pudimos llegar a muchas conclusiones, entre las cuales me gustaría destacar las siguientes:
-El ataque de la bacteria provoca una inmensa cantidad de respuestas moleculares en la planta, que intenta defenderse.
-Llama la atención que los cloroplastos es uno de los campos de batalla más estratégicos, digamos que es “la fuente de energía” de la planta, la bacteria lo sabe, y por eso ahí es donde la ataca especialmente.
-La bacteria altera el balance hormonal de la planta al atacarla.
-Las raíces reaccionan ante el ataque en las hojas, intentando ayudar desviando recursos.

Como conclusión final quiero destacar que esta investigación me parece fundamental porque nos ayuda a tener una visión global de lo que ocurre en una planta cuando es atacada por una enfermedad (y no solamente porque yo haya hecho una gran parte, ¡je, je!😎). 

Compartir:

Artículos científicos para no científicos

El objetivo fundamental de este blog es acercar la ciencia a la sociedad de forma que todos seamos partícipes de los avances científicos, haciendo así una sociedad más justa, igualitaria y avanzada. A lo largo de este blog podrás informarte de forma amena, con el máximo rigor científico y de primera mano, de los últimos artículos científicos en las mejores revistas internacionales.

Subscríbete gratis! Te enviaré un email cuando publique la siguiente entrada.

Páginas vistas en total

Todo lo publicado puede difundirse por cualquier medio (nombrando este blog como la fuente). Con la tecnología de Blogger.

Wikipedia

Resultados de la búsqueda

Labels